《小数乘小数》教学反思

时间:2024-07-09 18:14:41
《小数乘小数》教学反思

《小数乘小数》教学反思

身为一名人民老师,教学是我们的任务之一,通过教学反思可以有效提升自己的课堂经验,我们该怎么去写教学反思呢?下面是小编为大家收集的《小数乘小数》教学反思,仅供参考,大家一起来看看吧。

《小数乘小数》教学反思1

小数乘小数是整数乘法的发展,是小数乘法教学的重点,也是难点,它是在学生学习了小数乘整数和整数乘整数的基础上进行教学的。本节内容应用转化和对比概括小数乘法的计算方法。即用转化的方法,将小数乘法转化为整数乘法。在转化的过程中,处理积中小数点的位置问题是学习的重点。我以为这一节知识学生已有了一定的基础,只要重点掌握了小数乘法的算理,学起来应该是比较轻松的,可事实的情况大大出乎我的意料。在本节课的课后练习中,我发现学生出现以下错误现象:

1、竖式中的错误:部分学生列竖式时,按照加减法的计算方式对齐小数点的位置列式,显然是对算理没有理解。

2、积的小数位数数不对,体现在两方面:有的孩子把两个因数的小数点也算在小数位数里了,导致积的小数位数总是多两位。

3、还有部分学生在积的末尾有零时,先划去0再根据因数的小数位数点小数点,从而使积的小数位数总是少一位或几位。

4、由于因数中间有0的整数乘法没过关,在小数乘法笔算时也犯同样的错误。

对于学生所出现的这些错误,我对自己的课堂教学进行了深刻的反思:说算理对于学生计算方法的掌握,逻辑思维能力的培养的确具有积极的作用。然而说算理一定要建立在学生对计算过程和方法感悟的基础上,使学生对算理真正内化,理解实现对所学知识的“意义建构”。教学中准确把握学生的学习状况,学生的学情不一样,接受能力各不相同,基础也不同,要尽量抓住课堂上的四十分钟,多关注后进生对知识的掌握情况。多给他们说话、板演改错题的机会,真正做到因材施教。

给予学生更多的自主探索学习的时间,因为小数乘法计算方法的依据是因数变化与积的变化规律,应该放手让学生通过独立思考或小组合作学习的形式,自己举例子说明积的变化规律,这样获得的积的小数点与因数的小数点的关系才是主动的。在讲算理的同时,重视计算技能的培养,细化类型,使各个层次的学生都能正确的理解和掌握计算的方法,做到既重视教学过程又重视教学结果;既注重新旧知识的联系、讲清算理,又要突出积的变化规律、突出竖式的书写格式、突出因数中小数的位数与积中小数的位数的关系。这样才能切实的提高课堂教学的效率。

《小数乘小数》教学反思2

课前,对这部分知识的教学担心几点:

1、学生能不能理解例题中1008除以100的原因?

2、学生能不能发现积的小数位数就是因数的小数位数之和?

3、下午上新课,效果会不会不如早晨?学生会不会有意见?

例题出示,提出问题,列式、估算,都没问题。提出用竖式计算后,学生埋头计算,自己巡视了一圈,个别学生不知道如何计算,便轻声提醒把算式看作整数进行计算;个别学生面对1008,虽然把小数点点在了两个0之间,却不知道为什么点在这。告诉我看估算结果的;多数学生知道,因为两个因数都乘10,积就乘100,要使原来的积不变,需要将现在的积除以100。几个学生一说整个计算过程,其他学生恍然“哦!原来使这样啊!”于是一通都通。“试一试”自然没问题。计算法则耶使学生自己总结的。因为在小数乘整数的教学中很注意让学生总结小数乘整数的计算法则,所以在这里只要在“看因数中有几位小数”中添上“一共”就行了。最后黑板上只有五个字“算、看、数、点、化”。提醒学生可以用估算的方法检查验算。

今天的例2依旧利用下午第二节课上的,例题出示,说说有关数学信息,提出第一个问题后学生自己列竖式计算,根本不需要我去讲解就说出了在“积的小数位数不够时,要用0来补足”的注意点。后面的“试一试”自然一帆风顺。

从两天的作业看,学生出错不是方法上,都是算错,不进位、看错数,7×7=46等。所以对这部分自己的评判是“过!”下周一上例3。

课后没事,写“教学反思”,感受是:“这部分知识是在学生已掌握小数乘整数的计算方法和移动小数点位数引起小数大小变化的基础上教学的。虽然最初担心学生不理解积的小数位数就是因数的小数位数的和。但是,由于自己在教学小数乘整数时非常注意让学生通过计算整理计算法则,发现注意点(能化简的要化简,积的小数位数不够时要用0补足),用估算的方法检查验算。所以在本部分的教学中自己才轻轻松松地完成教学任务。

通过这两个例题的顺利教学,提醒自己在教学中要注意以下几点:

1、对于每单元的知识教学,一定要踏踏实实的讲解到位,注意学生能力的培养,要注重双基的训练,每个知识点都要让学生过。不要炒夹生饭,这样才能让自己后期的教学顺利进行。

2、学生的学情不一样,接受能力各不相同,基础也不同,要尽量抓住课堂上的四十分钟,多关注后进生对知识的掌握情况。多给他们说话、板演的机会。

3、课前注意钻研教材,注意要教学的内容与前期教学内容及后期教学内容的联系,对学生学习情况要清楚地了解,对学生可能出现疑问的地方进行预设,对学生出现的问题要随机应变。”

《小数乘小数》教学反思3

本节课的目的是引导学生利用小数乘整数的计算的经验,再次用转化的方法,把小数乘小数转化成整数乘法来计算。

先以换玻璃的活动引入小数乘小数的学习,其作用是:

1、提供小数乘小数的生活素材。由计算长方形玻璃的面积引入两个因数都是小数的乘法计算,让学生感受到生活中许多问题的解决离不开小数乘法。

2、引起认知冲突。当学生列出1.2×0.8的算式来求长方形玻璃面积时,问题油然而生。两个因数都是小数,怎么计算?

3、借此对学生进行爱护公物,保护校园环境的教育。

让学生在自主的探究与合作学习中理解小数乘小数的算理,1.2扩大到它的10倍是12,0.8扩大到它的10倍是8,计算后的结果是96平方米,这个过程表述的虽然不如教科书呈现的那么简单,但它代表了相当一部分学生的解题思路,要给予及时的评价和鼓励。

《小数乘小数》教学反思4

本节课的内容是在学生掌握了小数乘整数的基础上进行教学的。通过对比建立新旧知识间的联系,学生学得比较轻松,正确率也较高。

成功之处:

在知识障碍出引发学生的思考,着力解决当两个因数都是小数时,积怎样处理点小数点。通过复习小数乘整数的内容,让学生进一步明确计算方法,特别是小数点的处理。在新知学习中,着重让学生观察因数的小数位数与积的小数位数之间有什么关系,从而得出因数中一共有几位小数,就从积的右边数出几位点上小数点。

不足之处:

1.列竖式时出现了点错小数点的现象,有的只关注第一个因数的小数位数,有的只关注第二个因 ……此处隐藏6008个字……,亲身体验计算方法的生长过程,从而有效形成计算的技能。

练习一:根据182×23=4186请你快速找出积的小数点应该点在哪里?

1.82×23 18.2×2.3 1.82×2.3 0.182×0.23

让学生根据整数乘法的积,确定小数乘法的积的小数点,再一次理解算理,并可以减少学生的繁琐计算,在快速回答时,学生体验和感悟到确定积的小数点位置的简便方法。

练习二:182×23=4186,如何让等式182×23=4.186成立呢?

再次根据整数乘法的积,确定小数乘法的积的小数点,不过这次是根据积的位数,确定因数的位数。在学生的不同答案中,学生又一次感悟到因数中小数的位数与积的位数之间的关系,是学生思维认识上的一次升华。

于是,让学生回顾刚才的探索,对于小数乘小数,怎样迅速的确定小数点的位置?你有什么经验?交流中,对于小数乘小数的计算方法的得出非常自然,学生用自己的理解归纳得很到位。

练习三:1.25×3.2=4,想一想,这一题做对了吗?

学生又一次争论着:肯定错了,因数中一共有3位小数,而积是整数。错了,虽因数中一共有3位小数,但积应该是两位小数,因为5×2末尾有0。引导学生通过计算,再观察算出的结果。学生满脸惊讶!接着讨论:这个积的小数部分的三位小数哪里去了呢?

本节课我不是用大题量训练来强化计算方式,而是从练习设计上触动学生的思维,关注学生数学思维的有效生长。

作业反馈:作业本上的练习难度大,课堂上重视竖式计算,对于口算,后进学生脱离竖式有点茫然,需老师的指点。对于※号题,根据138×25=3450,使下面的等式成立。( )×( )=3.45 ( )×( )=345。个人感觉对于第一节课后就是这样有思维的练习,一部分学生还真有点不知所措。

《小数乘小数》教学反思13

昨天我上小数乘小数的时候,学生列竖式问题很大。有的同学在计算小数乘法时,索性去掉小数点列成整数竖式,而后直接利用积的变化规律在横式上点上几位小数。也有的学生受小数加减法影响,喜欢把小数点对齐,而不是末尾对齐。可他们的答案也正确。照教材要求小数乘法要先按整数乘法的方法进行计算,自然竖式也要象整数乘法的竖式一样,末尾对齐。我在《小学数学教学》这个杂志上,也曾经看到一篇文章说:学生在乘数是多位数的乘法竖式中,有的学生是用上面因数每一位分别去乘下面因数各个数位上的数,这样竖式也是合理性。那么我在想小数乘法中是否也允许他这样写呢。竖式本来就是为了计算方便,学生觉得小数点对齐,看起来也很整齐很清楚,那为什么一定要他把竖式写成末位对齐呢?

昨天我在小学数学教学论坛上发了这个帖子,版主说:我想是不可以吧。可也不说为什么一定不可以。虽然心里还是疑惑着,但还是尽量让学生规范写竖式。

今天我把几个怎么教也要写错的同学,让他们把数位多的数写在上面,数位少的写在下面,Z这样一说竖式也正确了,计算正确率也提高了。

《小数乘小数》教学反思14

小数乘小数本小节是第一单元的一个教学重点,它是在学生学习了小数乘整数的基础上进行教学的。并紧紧依托学生已有知识和经验,顺应探索过程中学生的思维取向,引导学生进行主动探索、积极思考和讨论交流,在不断地“产生疑问、进行探索、释疑、运用”这一循环过程中,自然地发现“积中小数位数与因数小数位数”的关系。注重对算理和算法的自主探索。在整个过程中,我放手让学生充分运用已有知识自己去探索,凭学生自己的理解来寻找解决新问题的方法。再通过相互的交流,不断产生认知冲突,思维产生碰撞的火花,营造出继续探索规律,解决新问题的氛围。

(1)独立尝试。学生在独立计算4.2×3.6时,势必会根据对前面小数乘以整数,整数乘以小数的算法和算理的理解来进行计算,这一尝试可充分暴露学生的思维过程,我充分了解学生计算小数乘以小数时在认知上的难点,为接下来有针对性、有重点的教学找准了最佳的切入口。

(2)交流各自的算法与想法。在交流中,我让不同层次的学生畅谈自己的算法与想法,及时掌握学生不同的思维生长点和认知区别。比如在计算小数乘小数的过程中,教师首先让学生估算2.8×3.6的结果最大是多少,然后让学生再进行计算。我充分尊重学生,让尽可能多的学生创造性地参与到计算的探索过程中来,对学生算法、算理和结果上的对与错不作判断,而是把各种不同的算法与想法展示给全班学生,让其产生思维的碰撞与冲突,为其留下思维的空间。

运用规律来解决问题,让学生进一步感悟算理,获得方法。

运用学生自己发现的规律来指导计算,一方面可加深对算理的理解,提高对算法的感性认识,为归纳出小数乘以小数的法则打好基础,另一方面可提高学生的学习兴趣,让学生体验成功的愉悦,符合学生的认知规律和心理规律。如在课堂练习环节中,设计了练一练的习题,先让学生独立完成,再组织学生交流讨论,再指名在全体学生面前谈自己的想法与算法,通过计算与交流,学生对小数乘以小数的算法有了一定的感性认识,同时对因数中有几位小数,积中就有几位小数这一规律有了初步的感悟。

运用法则,进行专项训练与开放训练,以拓宽思维,促进发展。

小数乘法的计算法则,具有较强的操作性,是对小数乘法算理在操作层面上最简单的概括,对学生在计算时有很强的指导作用,是思维的简约化,是解题策略的优化。为此,设计了一些专项性习题,根据算式特点在积或因数中点上小数点的正确位置,以更一步强化积中的小数位数由因数中小数的位数来决定这一规律。为了拓宽学生的思维空间和想象空间,安排了一组开放性练习,使学生的基础知识得到落实,也使学生的学习潜能得到开发,探索能力得到训练。让学生在颇有兴趣的计算中感受到学习数学的目的,就是将探索获得的数学知识应用于生活工作中去,应用数学知识分析解决一些生活问题。

通过自主学习、同桌讨论、合作交流,去发现和创造小数乘以小数的算理和算法,从而使不同层次水平的学生都在原有基础上有所提高,使学生的情感、态度、学习思维能力、合作探究能力等得到培养和发展,使数学思想方法得到渗透。

《小数乘小数》教学反思15

一、我的主导性太强,在学生做题中出现错误时,我总是急于给学生分析做错的情况,而没有让学生自己找找原因。如果让他们先想想小数乘法的法则,然后再跟错题比较一下,这时候有的同学可能自己找出错题的原因,这样才能给学生留下深刻的印象,以至下次做题时不会再犯相同的错误。或者还可以把学生所有的错题的形式集合在一起,让学生自己“会诊”,找出错因。

二、新授前相关复习不够到位对于学生的学习起点没有一个正确的认识,在学生的基础掌握不好的情况下,就应该先为学生作好铺垫,提前让学生作好整数乘法和小数初步认识的复习,而不应该急于按教学计划开课。如果在开始教学新知识时就把好计算关,给学生夯实基础的话,就不致于出现正确率较低的现象。

三、重点放在学生理解算理,能用自己的话说出如何确定小数点的位置,对于小数点的移动引起小数大小的变化,有必要进行复习,渗透转化思想,启发学生自己解决问题。

《《小数乘小数》教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式