《分数乘整数》教学反思
身为一名刚到岗的教师,教学是我们的工作之一,借助教学反思我们可以快速提升自己的教学能力,教学反思我们应该怎么写呢?以下是小编精心整理的《分数乘整数》教学反思,仅供参考,大家一起来看看吧。
《分数乘整数》教学反思1反思本节课,无论是教学目标的定位,还是教学过程的组织,都反映出一种新的教学理念。我认为主要有以下几个方面:
一、关注学生的学习状态
新课程标准指出:“要关注学生数学学习的水平,更要关注他们在教学活动中所表现出来的情感和态度。”为此,教师在教学中为了让学生能真正主动地、投入地参与到探究过程中来,就应该设法让其在一开始就产生探究的内在需要,这是非常关键的。因此,这就需要老师既兼顾知识本身的特点,又兼顾学生的认知和学生已有的水平,寻找合适的切入口,让学生感受到眼前问题的挑战性和可探索性,从而产生“我也来研究研究这个问题”的兴趣。这节课一开始,我就让学生经历折纸操作——合作交流——寻找计算方法这一过程,使学生发现并掌握分数单位乘分数单位的计算方法。由于在这个过程中讨论的素材都来源于学生,他们讨论自己的学习材料,热情特别高涨,兴趣特别浓厚,都想通过自己的努力,寻找出“我的发现”,而对自己寻找出的法则印象特别深,同时又产生了继续探索、验证两个一般分数相乘的计算方法的欲望。
二、关注结论,更关注过程
传统教学是教师利用复合投影片等手段,让学生理解“分数乘分数”的算理,再利用其计算法则进行大量练习,以实现“熟能生巧”。“新课程标准”指出:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。”这一新的理念说明:数学教学活动将是学生经历的 一个数学化的过程,是学生自己建构数学知识的活动。因此,教学本课时力图让学生亲自经历学习过程,即让学生在动手操作——探究算法-举例验证——交流评价——法则整理等一系列活动中经历“分数乘分数”计算法则的形成过程。这里实现了让学生自己去做、去悟、去经历、去体验、去创造,同时也考虑了学生解题策略的自主选择,顾及了合作意识的培养,我深信这比单纯掌握计算方法再熟练生巧更有意义。
三、 科学的学习方法的渗透
新课程标准指出:“帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识技能、数学思想和方法,获得广泛的数学活动经验。”所以教师在引导学生经过不断思考获得规律的过程中,着眼点不能知识规律的本身,更重要的是一种“发现”的体验。在这种体验中感受数学的思维方法,体会科学的学习方法。本课从教学的整体设计上是由“特殊”去引发学生的猜想,再来举例验证,然后归纳概括,力图让学生体会从特殊到一般的不完全归纳思想。首先让学生通过活动概括得出“分数乘分数”只要“分子不变,分母相乘”或“分子相乘,分母相乘”即可的计算方法,再由学生自己用折纸、化小数、分数的意义等方法来验证这种计算方法,发现了“分数乘分数,分子不变,分母相乘”特殊性,以及“分数乘分数,分子相乘,分母相乘”的普遍性。这其间渗透了科学的学习方法和实事求是的科学精神。
四、 困惑之处
如何关注全体?本课第一阶段研究“几分之几乘几分之几”时,由于学生是在自己操作的基础上去发现规律的,所以全体学生兴趣高涨,都积极主动地参与到了探究的过程。而到第二阶段去验证交流“几分之几乘几分之几”中,除了用折纸法验证交流外,其余的环节几乎都被几名“优等生”“占领”,虽然教师多次这样引导:“谁能听懂他的意思?你能再解释一下吗?”,“用他的方法去试试看。”但部分学生还是不能参与其中,成了“伴学者”。所以,如何面对学生的差异,促使学生人人都能在原有的基础上得到不同的发展,是课堂教学中值得探索的一个课题。
《分数乘整数》教学反思2分数乘整数的知识基础在于同分母分数加法的计算方法及分数的意义及整数乘法的意义等知识。在课堂的开始环节,我对这些内容进了一定的复习,再进入分数乘整数的教学。分数乘整数的算法很简单,在相乘时,分母不变,只把整数和分数的分子相乘作分子。在教学这个内容时,我关注到新教材在算理方面的重视,注意到图形和算式之间的联系,在计算前充分让学生感知涂图形的过程。
一、关注学生的学习状态
从学生已有的知识经验出发,复习几个相同分数和的计算方法。从而让学生感知分数乘法的意义-----求几个相同分数和的简便运算。在此基础上学生很容易从加法的角度联想到分数乘整数的方法,这种顺向迁移,对学生的学习作用很大。在学生研究分数乘法的计算方法中,用以前所学的知识来解释和理解分数乘整数的计算方法,学生理解起来也很容易。教师运用新知与旧识的密切联系,让学生在认知的最近发展领域自由学习并有所收获,学生的学习是积极有效的。
二、让学生感受,学生才会感悟
对于学生而言,计算方法没有难度。但是形成先约分后计算的计算习惯确实在教学中的难点。来自学生的困惑:为什么一定要先约分,不约分也可以计算出结果。只有让学生真正感受到约分的优势,以及不约分计算的弊端,学生才会自发的先约分后计算。先设计简单的数据,学生既可以先约分再计算,也可以先计算再约分。因为数据简单,所以无论哪一种学生都可以得到正确答案。再设计7/22×33这道题,学生先计算后数据比较大,看不出公因数没有办法约分。所以学生中出现两种答案。这时两种方法进行比较,感受先约分数据小容易,先计算数据大很难约分。只有经历过这种错误的学生才有深刻的感受------先约分再计算,计算更方便。
三、掌握方法、提高计算能力
在这节课上,重点让学生理解和掌握的分数乘整数的计算方法,但是学生的计算能力的训练体现的不多。如果学生在课堂上的计算能力能够有所提高,这样一节计算课的效果就更好了。
《分数乘整数》教学反思3分数乘整数的知识基础在于同分母分数加法的计算方法及分数的意义及整数乘法的意义等知识。在课堂的开始环节,我对这些内容进行了一定的复习,再进入分数乘整数的教学。
分数乘整数的算法很简单,在相乘时,分母不变,只把整数和分数的分子相乘作分子。在教学这个内容时,我关注到新教材在算理方面的重视,注意到图形和算式之间的联系,在计算前充分让学生感知涂图形的过程。因此,在后面计算方法的得出就水到渠成,比较容易了。
三堂课上下来,学生对算理的理解比较清晰。目前还存在的问题就是约分的环节,有些学生喜欢算出结果以后再约分,对计算过程约分还不愿意采用。可能对于这种在计算过程当中的约分,还是一知半解,对这样约分的道理理解得不够清楚。我在介绍这种办法的时候还特意把要约分的分数改写成分母和分子分别由几个数相乘的形式,帮助学生理解。可能这样做,还做得不够吧?再由于上学期的约分知识很多学生就不熟练,有不少学生仍不断出现约分错误和忘记约分的情况。
……此处隐藏5502个字……已有的对整数乘法意义的认识。然后再通过改题呈现例1:做一朵绸花要米绸带,小芳做3朵这样的绸花,一共用几分之几米绸带?学生顺理成章地列出了例1的乘法算式,通过我追问这题为什么也用乘法计算?学生自然地将整数乘法的意义迁移到分数乘整数的意义中,实现了知识的正迁移。
二、尊重学生的“数学现实”,加强算法的探究。
在学习本课之前,其实已经有许多学生大概知道了分数乘整数的计算方法,但对于为什么要这样算就不清楚了。如果再按照一般的教学程序(呈现问题——探讨研究——得出结论)进行教学,学生就会觉得“这些知识我早就知道了,没什么可学的了。”,从而失去探究的兴趣。教师的主导作用在于设计恰当的教学形式,调动不同层次的学生的学习兴趣。于是在教学时×3的算法时,小葛老师问:你知道怎么乘吗,你认为整数3与分数的什么相乘呢?重点让学生明白为什么要这样乘。抓住这一质疑点,提出:“为什么只把分子与整数相乘,分母不变”接下来的教学就引导学生带着“为什么”去探索。由质疑开始的探索是学生为满足自身需要而进行的主动探索,因此学生在课堂上迫不及待地,积极主动地进行讨论,从不同的角度解决疑问。
二、实现教学的个性化,发展学生的思维。
每个学生都有各自的生活经验和知识基础,面对需要解决的问题,他们都是从自己特有的数学现实出发来构建知识的,这就决定了不同的孩子在解决同一问题时会有不同的视角。在本节课中,葛老师放手让学生用自己思维方式进行自由的、多角度的思考,学生自主地构建知识,充分体现了“不同的人学习不同的数学”的理念。有的学生通过对分数乘整数的意义的理解,将分数乘整数与分数加法的计算方法联系起来思考;有的学生通过计算分数单位的个数来理解;有的学生讲清了分母不能与整数相乘,只能将分子与整数相乘的道理;还有的学生将分数转换为小数,同样得到了正确的结果。由此我深深地体会到,包括教师在内的任何人,都不能要求学生按照我们成人的或者教材编写者的意图去思考和解决问题,那些单一的、刻板的要求只会阻碍学生的思维发展。
《分数乘整数》教学反思13分数乘整数的知识基础在于同分母分数加法的计算方法及分数的意义及整数乘法的意义等知识。在课堂的开始环节,我对这些内容进行了一定的复习,再进入分数乘整数的教学。
分数乘整数的算法很简单,在相乘时,分母不变,只把整数和分数的分子相乘作分子。在教学这个内容时,我关注到新教材在算理方面的重视,注意到图形和算式之间的联系,在计算前充分让学生感知画、涂图形的过程。因此,在后面计算方法的得出就水到渠成,比较容易了。再者,对“分数乘整数表示的意义”也有机的渗透,为后面的知识打好铺垫。
一堂课上下来,由于学生对内容比较容易接受,课堂上有了空余时间。学生对算理的理解比较清晰,但还存在的问题就是约分的环节,有些学生喜欢算出结果以后再约分,对计算过程约分还不愿意采用,教学反思《分数乘整数教学反思》。这一环节还应讲深讲透。学生可能对于这种在计算过程当中的约分,还是一知半解,对这样约分的道理理解得不够清楚。学习分数乘整数,学生在计算时肯定会遇到先约分后乘还是先乘后约分的问题。如果仅仅是为得到一个正确的结果,那么无论前者,还是后者,都无关紧要,只要不出差错,最后都能得到正确结果。显然,我们还需要学生养成良好的计算习惯,较高的计算速度和计算正确率!那么我们就必须让学生明白到底哪种思路更合理,更有助于自己的后续学习。作为分数乘法的第一节课——分数乘整数,形成先约分后计算的良好计算习惯,对于提高学生计算的正确率和计算速度,有着很重要的作用。在教学分数乘法在过程中约分时,我给学生练习的题目是: ×5,并且列出两种做法让学生进行比较。但我觉得这道题并不能体现在计算过程中先约分的优越性。应该将题目改得稍复杂些,变成“13× 5/26”,并且和同学们一起比赛谁做得快。如果哪位学生是用整数直接乘以分子的,速度当然会很慢,当做得最快的同学展示自己的做法时,其他同学恍然大悟,深刻体会到计算过程中先约分,可以化繁为简。这样,学生在做分数乘法时,不仅仅满足于“分子和整数相乘的积作分子,分母不变”,而是记住“能约分的要约分”这一要点。
《分数乘整数》教学反思14本节课我从复习同分母分数加法引入,得出整数乘法的意义和分数乘整数的意义相同都是求几个相同加数和的简便运算,由此进入分数乘整数方法的计算教学。教学方法时我注重算理的讲解、注重图形和算式的联系。可以说这节课的内容很简单,但作业反馈的情况看正确率却很低。存在的问题就是约分的环节,有些学生喜欢算出结果以后再约分,就比较爱出错。再由于上学期的约分知识很多学生就不熟练,有不少学生仍不断出现约分错误和忘记约分的情况。
作为分数乘法的第一节课——分数乘整数,形成先约分后计算的良好计算习惯,对于提高学生计算的正确率和计算速度,有着很重要的作用。
《分数乘整数》教学反思15把这次公开课选为《分数乘整数》这一内容,是因为上学年听了冬梅老师讲了若干遍《分数乘分数》,并一举在市名列前茅。我选了《分数乘分数》的前一信息窗,内容相对来说比较简单。对此类课的教学思路有了一定的了解,感觉有信心上好这节课。
课堂上,我是按照事先设计好的方案一步一步地进行着。结果第一环节提出数学问题,根据已有的经验列出算式就出了问题,我提出:“‘求做一个风筝一共需要多少米布条?’其实就是求什么?”。一下子把孩子问在那里了。周折了一小会儿才开始列式计算了。紧接着第二个环节列式计算,并理解分数乘整数算式的意义还好。很顺利地进行到第三个环节学习计算方法。大部分学生都用分母不变,只把分子与整数相乘的方法计算的。我不失时机地启发学生思考:为什么只把分子与整数相乘呢?比比看谁的理由最充分。这时学生们都陷入了思考,带着“为什么”去探索。在课堂上迫不及待。积极主动地进行讨论,在理清算理的基础上通过课件演示总结出法则。这一环节我自己还比较满意。到了第四环节,通过法则指导计算,并学会简便方法约分时,又出问题了,学生不理解为什么约分后的分子相乘分数的大小还不变,一直在那里纠结,足足耽误了将近十分钟的练习时间。
通过评课,同行们给我找明了问题的关键:
1、教师在第一环节的提问绕圈子了,不要问学生“要求这个问题就是求什么?”直接让学生列式解答即可。在列式的基础上让学生自己发现6个相加可以写成×6的形式,从而明白分数乘整数的意义。
2、在探究算法的过程中,应当与算理相融合,一位同学探究说出算理和算法以后,应该结合课件再多找几个学生强化一下,这样落实面才会更广一些。
3、当学生提出对于约分环节的不理解时,教师不要急于解释,可让其在练习的基础上验证一下,或告知其下课后继续研究,一定不要把时间浪费在与个别学生纠结一些价值不大的问题。教师要有主观能控力。
4、分数的书写顺序要注意标准。
听了大家伙的建议,自己感觉很有道理,不再去邻班讲一次真对不住朋友们提出的这些大好建议。感谢教研组的评课,各路高手就像是一位位神医,帮我查找到这节课的各种病症,只不过要想医治成功还需要“患者”的努力。
文档为doc格式